随着焊接技术的发展,激光焊接技术在制造加工业中的应用也越来越广泛~今天就给大家介绍一下激光焊接技术的特点与原理及其与传统焊接的区别。
脉冲激光主要用于1 m m厚度以内薄壁金属材料的点焊和缝焊,其焊接过程属于热传导型,即激光辐射加热工件表面,再通过热传导向材料内部扩散,通过控制激光脉冲的波形、宽度、峰值功率和重复频率等参数,使工件之间形成良好的连接。在3 C产品外壳、锂电池、电子元器件、模具补 焊等行业有着大量的应用。脉冲激光焊接最大的优点是工件整体温升很小,热影响范围小,工件变形小。
连续激光焊接大部分都是高功率激光器,功率在500瓦以上,一般1mm以上的板材都应该使用这种激光器。其焊接机理是基于小孔效应的深熔焊,深宽比大,可达到5:1以上,焊接速度快,热变形小。在机械、汽车、船舶等行业有着广泛的应用。还有一部分小功率连续激光器,功率在 几十到几百瓦之间,它们在塑料焊接及激光钎焊这些行业使用得比较多。
1、激光器工作原理
1.1、YAG激光器的工作原理
激光电源首先把脉冲氙灯点着,通过激光电源对氙灯脉冲放电,形成一定频率,一定脉宽的光波,该光波经过聚光腔辐射到Nd 3+:YAG激光晶体上,激发Nd 3+:YAG激光晶体发光,再经过激光谐振腔谐振之后,发出波长为1064nm脉冲激光,该脉冲激光经过扩束、反射、(或经光纤传输)聚焦后打在所要焊接的物体上;在PLC或工业PC机的控制下,移动数控工作台,从而完成焊接。焊接时所需要的脉冲激光的频率、脉宽、波形、工作台速度、移动方向均可用单片机、PLC或工业PC机来控制,通过对激光的频率、脉宽的不同设定可调节控制脉冲激光的能量。
当泵浦光通过光纤中的稀土离子时,就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。光纤激光器产生的激光通过光纤输出,并与配套的工作台配合,完成相应的焊接。光纤激光器分为脉冲光纤激光器和连续光纤激光器。其中,脉冲光纤激光器可通过激光的峰值功率、频率、脉宽的设定来调节激光脉冲单点能量;连续光纤激光器则通过设定平均激光功率来调节输出激光功率。
1.3、半导体激光器的工作原理
通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器产生的激光也可通过光纤输出进行焊接。
2、激光焊接特点
激光焊接是一种新型的焊接方式,激光焊接主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,其特点有:
具有高的深宽比,焊缝宽度小,热影响区小,变形小,焊接速度快。
焊缝平整、美观,焊后无需处理或只需简单处理工序。
焊缝质量高,无气孔,可减少和优化母材杂质,组织焊后可细化,焊缝强度、韧性至少相当于甚至超过母材金属。
可精确控制,聚焦光点小,可高精度定位,易实现自动化。可实现某些异种材料间的焊接。